Supervised learning → dataset에 y값 즉 답이 주어져 있을 경우의 학습!
Model design
방정식 형태로 w 라는 weight와 b라는 bias가 구성되어있음 → x와 y의 관계를 나타냄
예시에서는 간단히 b를 없애고 시작한다.
w를 임의로 추측한다.
MSE
학습시 나오는 loss를 나타내는 대표적인 function
loss가 최소가 되는 w를 찾아야함!!
N → all data 를 뜻한다.
앞의 예시에서의 MSE를 나타내는 표
예시 코드
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
# our model for the forward pass
def forward(x):
return x * w
# Loss function
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) * (y_pred - y)
# List of weights/Mean square Error (Mse) for each input
w_list = []
mse_list = []
for w in np.arange(0.0, 4.1, 0.1):
# Print the weights and initialize the lost
print("w=", w)
l_sum = 0
for x_val, y_val in zip(x_data, y_data):
# For each input and output, calculate y_hat
# Compute the total loss and add to the total error
y_pred_val = forward(x_val)
l = loss(x_val, y_val)
l_sum += l
print("\t", x_val, y_val, y_pred_val, l)
# Now compute the Mean squared error (mse) of each
# Aggregate the weight/mse from this run
print("MSE=", l_sum / len(x_data))
w_list.append(w)
mse_list.append(l_sum / len(x_data))
# Plot it all
plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()
|
cs |
plt.show() 의 출력 결과.
w=2.0 일 경우 Loss가 최소임을 확인할 수 있다.